Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Pentacarbonyl(3,3',4,4'-tetramethyl-1,1'-diphosphaferrocene-κ*P*)tungsten(0)

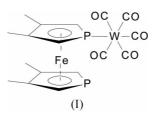
Lesław Sieroń* and Anita Tosik

Institute of General and Ecological Chemistry, Technical University of Łódź, Żeromskiego 116, 90-924 Łódź, Poland

Correspondence e-mail: lsieron@p.lodz.pl

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.006 \text{ Å}$ R factor = 0.026 wR factor = 0.059Data-to-parameter ratio = 19.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, [WFe(C_6H_8P)₂(CO)₅], the phospholyl rings in the diphosphaferrocene moiety are in a skew conformation. The intramolecular distance between the P atoms of 3.553 (4) Å indicates a secondary bonding interaction.

Received 4 November 2004 Accepted 8 November 2004 Online 13 November 2004

Comment

This work forms part of our studies of substituted diphosphaferrocenes, their stereochemistry and structural analyses (Sieroń *et al.*, 1998; Zakrzewski *et al.*, 1998, 2002). The title compound, (I), represents the first structurally characterized complex with a P-monosubstituted diphosphaferrocene. The crystal structure of (I) is shown in Fig. 1. The phospholyl rings are planar, with a dihedral angle of 2.65 (9)° between the rings. The corresponding bond distances and angles are equal within experimental error, except for slight differences in the P1—C5/P11—C15 bond lengths and C2—P1—C5/C12—P11—C15 angles (see Table 1).

The conformation of the 1,1'-diphosphaferrocene moiety is usually described as a function of the dihedral angle θ , defined as the angle between the planes normal to each phospholyl ring that contain both Fe and P atoms (Ashe & Al-Ahmad, 1996). Two P atoms are eclipsed at $\theta=0^{\circ}$, whereas in the antiperiplanar conformation $\theta=180^{\circ}$. The reported structure shows a skew conformation of the phospholyl rings with $\theta=38.3$ (1)°. The intramolecular distance between the P atoms is 3.553 (4) Å, which indicates a secondary bonding interaction (Alcock, 1972, 1990).

The W atom is not coplanar with the attached cyclopenta-dienyl ring and deviates from its plane, with a C3-C2-P1-W torsion angle of $164.0~(2)^{\circ}$. The W-P1 distance is 2.464~(2)~Å, and the W-C21 bond length of 2.002~(5)~Å trans to W-P1 is slightly shorter than the other four W-C bond lengths, which range from 2.031~(5) to 2.050~(5)~Å.

The absence of hydrogen bonds and π -stacking interactions suggests that the crystal packing is determined only by van der Waals forces.

Experimental

Compound (I) was synthesized according to the procedure reported by Deschamps *et al.* (1984). Crystals suitable for X-ray analysis were

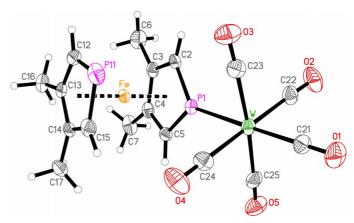
© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved obtained by slow diffusion of pentane into a solution of compound (I) in dichloromethane.

Crystal data

$[WFe(C_6H_8P)_2(CO)_5]$	$D_x = 2.009 \text{ Mg m}^{-3}$
$M_r = 601.93$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 48
a = 13.279 (13) Å	reflections
b = 10.857 (9) Å	$\theta = 3.6 14.0^{\circ}$
c = 14.061 (12) Å	$\mu = 6.69 \text{ mm}^{-1}$
$\beta = 101.02 \ (7)^{\circ}$	T = 293 K
$V = 1990 (3) \text{ Å}^3$	Prism, red
Z = 4	$0.46 \times 0.13 \times 0.11 \text{ mm}$

Data collection

Siemens P3 diffractometer	$R_{\rm int} = 0.018$
$ω$ –2 θ scans	$\theta_{ m max} = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -17 \rightarrow 16$
(North et al., 1968)	$k = 0 \rightarrow 14$
$T_{\min} = 0.236, T_{\max} = 0.480$	$l = 0 \rightarrow 18$
4752 measured reflections	3 standard reflections
4567 independent reflections	every 100 reflections
3802 reflections with $I > 2\sigma(I)$	intensity decay: none


Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0306P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 1.1109P
$wR(F^2) = 0.059$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
4567 reflections	$\Delta \rho_{\text{max}} = 0.71 \text{ e Å}^{-3}$
240 parameters	$\Delta \rho_{\min} = -0.67 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.00038 (9)

Table 1 Selected geometric parameters (Å, °).

P1· · ·P11	3.553 (4)	P1-C5	1.746 (4)
W-P1	2.464(2)	P11-C12	1.765 (5)
W-C21	2.002 (5)	P11-C15	1.766 (5)
W-C22	2.040 (5)	O1-C21	1.137 (5)
W-C23	2.031 (5)	O2-C22	1.134 (6)
W-C24	2.048 (5)	O3-C23	1.142 (6)
W-C25	2.050 (5)	O4-C24	1.134 (6)
P1-C2	1.755 (4)	O5-C25	1.125 (5)
P1-W-C21	177.58 (13)	C22-W-C23	90.6 (2)
P1-W-C22	89.34 (13)	C22-W-C24	179.15 (17)
P1-W-C23	88.68 (14)	C22-W-C25	90.4 (2)
P1-W-C24	91.48 (13)	C23-W-C24	89.2 (2)
P1-W-C25	85.55 (14)	C23 - W - C25	174.12 (17)
C21-W-C22	88.36 (18)	C24-W-C25	89.9 (2)
C21-W-C23	92.10 (19)	C2-P1-C5	90.61 (19)
C21-W-C24	90.82 (19)	C12-P11-C15	88.2 (2)
C21-W-C25	93.72 (18)		` ′

All H atoms were located in difference Fourier syntheses but were positioned with ideal geometry (C—H = 0.93 Å) and refined with fixed isotropic displacement parameters [$U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$] using the riding model. The positions of the methyl H atoms were idealized

Figure 1View of the title compound, with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level.

(C-H = 0.96 Å), then refined with fixed isotropic displacement parameters $[U_{\rm iso}(H) = 1.5 U_{\rm eq}(C)]$ as rigid groups allowed to rotate but not tip.

Data collection: *P3 Software* (Siemens, 1993); cell refinement: *P3 Software*; data reduction: *XDISK* in *SHELXTL/PC* (Sheldrick, 1990); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL/PC*; software used to prepare material for publication: *PLATON* (Spek, 2003).

The authors are grateful to Professor J. Zakrzewski, University of Łódź, Poland, for providing the crystals of the title compound.

References

Alcock, N. W. (1972). Adv. Inorg. Chem. Radiochem. 15, 1-58.

Alcock, N. W. (1990). Bonding and Structure: Structural Principles in Inorganic and Organic Chemistry. New York: Ellis Horwood.

Ashe, A. J. III & Al-Ahmad, S. (1996). *Adv. Organomet. Chem.* **39**, 325–353. Deschamps, B., Mathey, F. & Fisher, J. H. (1984). *Inorg. Chem.* **23**, 3455–3462. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.

Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1993). P3 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sieroń, L., Tosik, A. & Bukowska-Strzyżewska, M. (1998). J. Chem. Crystallogr. 28, 621–628.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zakrzewski, J., Kłys, A., Bukowska-Strzyżewska, M. & Tosik, A. (1998). Organometallics, 17, 5880–5886.

Zakrzewski, J., Kłys, A., Bukowska-Strzyżewska, M. & Tosik, A. (2002). J. Organomet. Chem. 645, 268–273.